Detection of Trace Naltrexone and 6β-Naltrexol in Human Hair Using Enzyme Linked Immunosorbent Assay (ELISA)

Jason Hulen, Valencia Sagnia, Irene Shu
United States Drug Testing Laboratories, Inc., Des Plaines, IL, United States

Objective
- Our laboratory has had a LC-MS/MS method for detection and quantification of naltrexone and 6β-naltrexol.
- However, one single method is not ideal in a forensic drug testing setting which mandates both initial and confirmatory testing of different methodologies.
- Therefore, an initial detection method using ELISA was sought.

INTRODUCTION
- Ideal screening method must detect both naltrexone and 6β-naltrexol.
- Cut-off is 100 pg/mg for LC-MS/MS.
- 6β-Naltrexol nearly always exists at a higher concentration than naltrexone in hair.

METHOD
- Sample Preparation
 - 20 mg of 1.5 inch hair strands
 - Acetone Wash
 - Powdered
- Extract
 - 1.5 mL methanol
 - 2-hour sonication with heat
 - Centrifuge
- ELISA
 - Evaporate 1.0 mL methanol extract
 - Reconstitute
 - Heterogeneous-competitive ELISA (Immunalysis®)

Results: Method Validation
- 5 runs each consisting of 4 controls at concentrations of 0.5x cut-off (50 pg/mg), 1.5x cut-off (150 pg/mg), and at the 100 pg/mg cut-off (Calibrator). Also, 4 negative controls were included in each run.
- Replicates
- All controls 0.5x – 100x cut-off had lower B/B0 than the LOD.
- mean B/B0 ± 2 SD for both 0.5x and 1.5x cut-off did not overlap the mean cut-off.

Results: Authentic Hair Samples
- Authentic hair sample grouped based on LC-MS/MS results.

DISCUSSION & CONCLUSION
- Majority of hair samples have 6β-naltrexol as the predominant form of naltrexone exposure.
- Immunanalysis® Naltrexone ELISA kit was validated according to SWGTOX guideline1 to test hair samples as a screening method, and it gave satisfactory test sensitivity and specificity.
- The ELISA cross-reacted with 6β-naltrexol sufficiently, meaning the ELISA may test positive even when naltrexone is below cut-off in a hair sample.
- This satisfies our needs for two different test methodologies (ELISA and LC-MS/MS) to provide forensically defensible toxicology results.

References:
3) SWGTOX standard practices for method validation in forensic toxicology. J. Analytical Toxicology. 2013, 37, 482.

Disclaimer:
The authors have a financial relationship with United States Drug Testing Laboratories, USDTL, as defined in the AACC policy on potential bias or conflict of interest.

Contact Us:
800.235.2367 • www.USDTL.com
1700 S. Mt. Prospect Road • Des Plaines, IL • 60018